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Lecture No. 16 

Example 

Consider Laplace’s Equation 

ℎ𝑥

𝜕2𝑢

𝜕𝑥2
+ ℎ𝑦

𝜕2𝑢

𝜕𝑦2
= 0 

with b.c.’s 

         𝑢 = �̅� on Γ𝐸 

𝑞𝑛 = α𝑛𝑥ℎ𝑥

𝜕𝑢

𝜕𝑥
+ α𝑛𝑦ℎ𝑦

𝜕𝑢

𝜕𝑦
= �̅�𝑛 on Γ𝐸 

 

 

 

 

          Ω   Γ𝐸 

 

 

       Γ𝑁 
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 Recall that α𝑛𝑥 and α𝑛𝑦 are the direction cosines of the normal n, w.r.t. x and y 

 Assuming Galerkin, the fundamental weak form is: 

∬(ℎ𝑥

𝜕𝑢

𝜕𝑥

𝜕(𝛿𝑢)

𝜕𝑥
+ ℎ𝑦

𝜕𝑢

𝜕𝑦

𝜕(𝛿𝑢)

𝜕𝑦
)𝑑𝑥𝑑𝑦 = ∫ �̅�𝑛𝛿𝑢𝑑Γ

Γ𝑁Ω

 

We assumed that ℎ𝑥 and ℎ𝑦 are constants. 

 We now establish the approximation over the element. We will use triangular elements. 

Using linear interpolation over the triangle we have: 

𝑢 = 𝜙𝑢(𝑛) = [𝜉1 𝜉2 𝜉3] [

𝑢1
(𝑛)

𝑢2
(𝑛)

𝑢3
(𝑛)

] = 𝜉1𝑢1
(𝑛)

+ 𝜉2𝑢2
(𝑛)

+ 𝜉3𝑢3
(𝑛)

 

 

 

 

 

 



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  1 6       P a g e  3 
| 14 

 

 Substituting into our formulation we have: 

∑ ∬ (ℎ𝑥𝜙,𝑥𝑢
(𝑛)𝜙,𝑥𝛿𝑢(𝑛) + ℎ𝑦𝜙,𝑦𝑢(𝑛)𝜙,𝑦𝛿𝑢(𝑛)) 𝑑𝑥𝑑𝑦 − ∫ �̅�𝑛𝜙

Γ𝑁Ω(𝑛)𝑒𝑙

𝛿𝑢(𝑛)𝑑Γ = 0 

          ⇒ 

∑𝛿𝑢(𝑛)𝑇 {[ℎ𝑥 ∫ ∫ 𝜙,𝑥
𝑇𝜙,𝑥𝑑Ω

Ω(𝑛)

] 𝑢(𝑛) + [ℎ𝑦 ∫ ∫ 𝜙,𝑦
𝑇𝜙,𝑦𝑑Ω

𝛺(𝑛)

] 𝑢(𝑛) − [ ∫ �̅�𝑛𝜙𝑇𝑑𝛤

Γ𝑁

]} = 0

𝑒𝑙

 

          ⇒ 

∑𝛿𝑢(𝑛)𝑇{𝑆(𝑛)𝑢(𝑛) − 𝑃(𝑛)} = 0

𝑒𝑙

 

where 

𝑆(𝑛) = ℎ𝑥 ∫ ∫ 𝜙,𝑥
𝑇𝜙,𝑥𝑑Ω + ℎ𝑦 ∫ ∫ 𝜙,𝑦

𝑇𝜙,𝑦𝑑Ω

Ω(𝑛)Ω(𝑛)

 

𝑃(𝑛) = ∫ �̅�𝑛𝜙𝑇𝑑𝛤

Γ𝑁
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Summing, taking into account functional continuity and the arbitrary variation of 𝛿𝑢, we get 

the following system of global equations: 

𝛿𝑢 = 𝑃 

However we recall that 

𝜙,𝑥 =
1

2𝐴
[𝑏1 𝑏2 𝑏3] = 𝑏 

𝜙,𝑦 =
1

2𝐴
[𝑎1 𝑎2 𝑎3] = 𝑎 

where 𝑎1 and 𝑏1 relate to arithmetic differences in nodal coordinates. Thus 𝑎 and 𝑏 are 

constant vectors and: 

𝑆(𝑛) = ℎ𝑥 ∫ ∫ 𝑏𝑇𝑏𝑑Ω + ℎ𝑦 ∫ ∫ 𝑎𝑇𝑎𝑑Ω

Ω(𝑛)Ω(𝑛)

 

          ⇒ 

𝑆(𝑛) = ℎ𝑥𝑏
𝑇𝑏𝐴 + ℎ𝑦𝑎𝑇𝑎𝐴 

 How do we handle natural boundary terms? Assume segment 2-3 of an element is on the 

natural boundary. Then: 
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𝑃(𝑛) = ∫ 𝜙𝑇𝑞
𝑛
𝑑𝛤

𝑛𝑜𝑑𝑒3

𝑛𝑜𝑑𝑒2

 

 

 

 

 

 

Let’s assume that �̅�𝑛 is constant over the segment (i.e. it could vary in a prescribed 

polynomial or other manner): 

𝑃(𝑛) = �̅�𝑛 ∫ [

𝜉1

𝜉2

𝜉3

] 𝑑𝑆

𝑛𝑜𝑑𝑒3

𝑛𝑜𝑑𝑒2

 

However on side 1, 𝜉1 = 0 and: 

𝑃(𝑛) = �̅�𝑛 ∫ [

0
𝜉2

𝜉3

] 𝑑𝑆

𝑛𝑜𝑑𝑒3

𝑛𝑜𝑑𝑒2

 

Using the analytical integration formula. 
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∫𝜉2𝑑𝑆 =
1! 0!

(1 + 0 + 1)
𝐿 =

1

2
𝑙2−3 

Similarly: 

∫𝜉3𝑑𝑆 =
1

2
𝑙2−3 

Therefore: 

𝑃(𝑛) = �̅�𝑛

[
 
 
 
 

0
1

2
𝑙2−3

1

2
𝑙2−3]

 
 
 
 

 

Mass Matrices 

 Let’s examine a typical mass matrix (which is associated with the time derivative term of 

the 2-D C-D equation) 

∫ 𝑢,𝑡𝛿𝑢𝑑Ω = ∑ ∫ (𝜙𝑢(𝑛))
,𝑡
𝜙𝛿𝑢(𝑛)𝑑Ω

Ω(𝑛)𝑒𝑙Ω
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         ⇒ 

∫ 𝑢,𝑡𝛿𝑢𝑑Ω = ∑𝛿𝑢(𝑛)𝑇 [ ∫ 𝜙𝑇𝜙𝑑Ω

Ω(𝑛)

] 𝑢,𝑡
(𝑛)

𝑒𝑙Ω

 

Therefore 

𝑀(𝑛) = [ ∫ 𝜙𝑇𝜙𝑑Ω

Ω(𝑛)

] 

For a linear triangle we have 𝜙 = [𝜉1𝜉2𝜉3]. Thus 

𝑀(𝑛) = ∫ ∫ [

𝜉1

𝜉2

𝜉3

] [𝜉1𝜉2𝜉3]𝑑Ω = ∫ ∫ [

𝜉1
2 𝜉1𝜉2 𝜉1𝜉3

𝜉2𝜉1 𝜉2
2 𝜉2𝜉3

𝜉3𝜉1 𝜉3𝜉2 𝜉3
2

]

Ω(𝑛)Ω(𝑛)

 

We note that: 

∫ ∫ 𝜉𝑖𝜉𝑗𝑑Ω =

(

 
 

𝐴(𝑛)

12
     𝑖 ≠ 𝑗

𝐴(𝑛)

6
     𝑖 = 𝑗Ω(𝑛)
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Thus 

𝑀(𝑛) =
𝐴(𝑛)

12
[
2 1 1
1 2 1
1 1 2

] 

If we were to lump this matrix we would have: 

 

𝑀𝐿
(𝑛)

=
𝐴(𝑛)

12
[
4 0 0
0 4 0
0 0 4

] =
𝐴(𝑛)

3
[
1 0 0
0 1 0
0 0 1

] 

 

Structure of 2-D Global Mass Matrix 

Consider only a portion of a triangular grid with global node numbers and element numbers 

indicated: 
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Procedure: Loop over the elements and sum local element matrices into “global” positions. 

Use element connectivity table to associate global with local node numbers for each element. 

Element Connectivity Table: 

   

element  n1 n2 n3 

5 7 9 5 

6 7 14 9 

7 12 14 7 

 

Indicate connectivity counter-clockwise (to get the correct sign convention for derivatives and 

areas). 

 General element n: 

            

         ⇒    𝑀(𝑛) =
𝐴(𝑛)

12
[
2 1 1
1 2 1
1 1 2

] 
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 For element no. 5 we have 

𝑀(5) =
𝐴(5)

12
[
2 1 1
1 2 1
1 1 2

] 

global positions are 7, 9 and 5. 

 

 For element no. 6 we have: 

𝑀(6) =
𝐴(6)

12
[
2 1 1
1 2 1
1 1 2

] 

global positions are 7, 14 and 9. 

 

 

 For element no. 7 we have: 

 

𝑀(7) =
𝐴(7)

12
[
2 1 1
1 2 1
1 1 2

] 

global positions are 12, 14 and 7. 
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 We assemble these elemental matrices into the following global matrix: 

  

        

 

 

 

 

 

 

   (
1

12
)    

 

 

 

 

 

 

 

 

 

 

 

   zero elements outside of bandwidth 
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The contributions depend on element connectivity 

If a node is part of 2 elements, it will make 2 contributions to a given location in the global 

matrix. 

If a node is part of 3 elements, it will make 3 contributions to a given location in the global 

matrix. 

 Bandwidth = 2 x maximum nodal point difference + 1 

   element  max. nodal pt. difference 

    5   9 − 5 = 4 

    6   14 − 7 = 7 

    7   14 − 7 = 7 

Total bandwidth = 2 x 7 + 1 = 15 

Thus the band extends 7 to the right of the diagonal and 7 to the left of the diagonal (for 

equation 14). Therefore matrix structure is sparse and banded. 

 

  



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  1 6       P a g e  
13 | 14 

 

Bandwidth: maximum extent to within which nonzero locations are contained. Thus node 

numbering is extremely important to the efficiency of implementation of FE codes 

(assuming you’re using banded matrix solvers). 

 

 Example:       # max nodal pt diff = 9 

            bandwidth = 19 

 

         # max nodal pt diff = 4 

            bandwidth = 9 
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 Gauss solution procedures for banded matrices require 0(𝑀2𝑁) operations where N equals 

the number of nodes, M equals the bandwidth. Therefor the savings of the example 

considered equal 0 (
19

9
)
2

= 0(5). Savings can however be orders of magnitude! 

 A rule of thumb for numbering is to number across the minimum width. 

 For general and irregularly shaped geometries: 

Program algorithm to minimize maximum bandwidth by renumbering nodes. Optimal Node 

Number is typically not achieved but at least it’s pretty good. (Also depends on the 

particular algorithm). 

 

 Also we can use sparse matrix solvers. Node numbering can still be 

important for some iterative solvers such as pre-conditioned conjugate 

gradient solvers. We typically use these techniques for very large grids 

for which the efficiency in terms of CPU and memory utilization is 

much better than banded direct solvers. 

 


